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) University of
Today’s planned route:

» Motivation: if it isn’t broken...

» Time minimal trajectories using an indirect method

» Fixed time trajectories using a direct method

» Free time, fuel minimal trajectories using dynamic programming

» Future horizons
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> “If aviation was a country, it would be in the top ten of emitters.”

cathie.wells@reading.ac.uk Mathematics of Planet Earth 4th April, 2023




cathie.wells@reading.ac.uk Mathematics of Planet Earth 4th April, 2023




University of

Alternative ideas Reading

Structures

» Change plane design.

Fleets have become 54% more efficient in the last 30 years.

% Aerodynamics
Propulsion %

Manulacturing ${
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{a) Turbofan aircraft design (b} Blended-wing-body design
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Alternative ideas B8 Reading

» Change plane design.
Fleets have become 54% more efficient in the last 30 years.

» Put more passengers on each flight.
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Norwegian Named Most Fuel-Efficient Airline on Transatlantic Routes for a Second Time by ICCT
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University of

Alternative ideas Reading

» Change plane design.
Fleets have become 54% more efficient in the last 30 years.

» Put more passengers on each flight.

Premium passengers: 5.2% of air traffic, but 30.4% of passenger revenue.

» Develop flocks of aircraft.

Fine on paper, but delays would cause fuel usage to be impossible to predict. 0
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University of

Alternative ideas Reading

» Change plane design.
Fleets have become 54% more efficient in the last 30 years. B

» Put more passengers on each flight.
Premium passengers: 5.2% of air traffic, but 30.4% of passenger revenue.

» Develop flocks of aircraft.
Fine on paper, but delays would cause fuel usage to be impossible to predict. 0

» Invest in development of biofuels.
Research is starting now and will still only be able to produce one third of

the fuel needed by 2050.
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Motivation: A practical solution

»100% satellite coverage of North Atlantic.

» Trajectory Based Operations: better efficiency.

Photo source: Airbus.com
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Motivation: A practical solution Loy
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Photo source: travel.stackexchange.com

» Airlines need to reduce emissions, whilst adhering to a schedule.
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Optimal control theory:

University of
@ Reading
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Time minimal trajectories using indirect methods

University of
@ Reading

How much difference would
horizontal, time optimal
trajectory planning make to fuel
use and thus carbon dioxide
emissions, in fixed airspeed
transatlantic flights compared
with the Organised Track
Structure?
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Method: B Reading

»Routes: JFK (40.6°N,73.8°W) and LHR (51.5°N,0.5°W).

» Winter period: 1st December, 2019 to 29th February, 2020.

»Winds from: National Center for Atmospheric Research (2.5° resolution)...
» Constant altitude FL340 equating approximately to a pressure of 250 hPa.
» Constant airspeed across each trajectory, from 200 m/s to 270 m/s.

» Air distance: airspeed x flight time.

» Fuel usage and emissions proportional to air distance.
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Defining the spherical system

Defining the symbols:

longitude in radians
latitude in radians

heading angle in radians
zonal wind in m s
meridional wind in m s
air speed of aircraft in m s

radius of Earth in m (here approximated to 6 371 000 m)
time in seconds

VIR SRR ST SIS NP
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Defining the problem B Reading

Parameters: Boundary conditions: Dynamical system:
t o i% 2(0) = Agept I VCOSRH + quxl, ®)
— ¢ 0) = ¢ COS
fina (0) dept . Vsin0 +v(4,¢)
¢ = R
State variables: :
Cost functional:
x, = A(t) Control variable: {inat
X, = ¢(t) = =ty
: a(t) =6 Ja)= | =y,

to
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Method: Euler Forward Step

Us+V cos heg
» lo; 1 = los + X dt
ll t+1 ih R cos la;

dA _ VcosO +u(l, ¢)

dat R cos ¢
: vy + V sin he
do _ Vsin@ + v(A, ¢) » lag., = la, + ‘ Lx dt
dt R R
e 1 9 cos 9 9 /1 Wind X dt
E__Rcoscp[ sin 6 cos —+ucos sin ¢ + cos? cos¢—¢—5+ COS“ A — hes 1 = he; —

R cos la;

+vsm9cos€sm¢+sm9cos€cosqb +Vcosl951nqb] \\

du
Wind = — sin he; cos he; (dl

dv) (dv) . )
| — cos? lo, (—) +v sin he,cos he; sin la,...
(dlo t+ t \dlo/; 5 2 5

) + u cos? he; sin la; + cos? he; cos la, (;lu)
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Results: Savings

Air distance difference for OFW routes and ATM tracks using NATS data

2.4§>:105 T T e“ 91 day?

Unweighted data:

Value of average of air distance difference

=0~ LHRto JFK weighted

= »= JFKto LHR weighted
LHR to JFK unweighted

= »= JFKto LHR unweighted
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Assumes equal numbers of flights
along each track supplied by NATS
each day. Savings found by taking
average air distance change over
each track, each day.

Weighted data:

Uses information supplied by NATS
to show how many aircraft used
each track each day. Savings are
found by a weighted average of air
distance savings across all tracks
each day.
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. 75, mh—lruﬁthmhﬁ‘cﬁthtﬂﬂ
% improvement = e —e

. . « LHR —— East Track

“~y. L  |——Eastbound route —— West Track

Best Worst L&y S —westboundroute )

stz - - N . o : F,

JFK to LHR 16.4
LHR to JFK 1.1 7.8
Welghted Average
JFK to LHR 2.5
LHR to JFK 1.7
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Overview of Findings: B Reading

Minimum fuel routes in each direction for day 1

JFK to LHR 16.4
LHR to JFK 1.1 7.8

% |mprovement at 240 m/s
Welghted Average
JFK to LHR
a5

|

| .
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Prevents
6.7 million kg of
CO, emissions
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Can fixed time flights be planned W x V.,
for a whole winter season to g=—"7

ensure that fuel is minimised? Nop X LCV o

In minimising fuel burn of Involves:

transatlantic flights, can extra * aircraft parameters

b i It f I * |SA atmospheric parameters
enefits result from controlling .

airspeed in addition to heading * airspeed

angle? ¢ temperature
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Method: Assumptions

» Routes: JFK (40.6°N,73.8°W) and LHR (51.5°N,0.5°W).

» Winter period: 1st December, 2019 to 29th February, 2020.
» Winds and temperature from: National Center for Atmospheric Research
» 2.5° resolution.

» Constant pressure of 250 hPa equating approximately to FL340.

»|Fixed time West 29 000 s, fixed time East 22 000 s.

»|Mass of aircraft varies as fuel is burned.

»|Fuel burn function based on recent papers by Poll and Schumann gs..
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. University of
Optimal control problem 2 B Reading

Parameters: Boundary conditions:
to = 0 MO = Adept
B te[0,tf]]cR $(0) = Pgept
tfinal — tf
State variables: Control variable:
x1 — A(t) 3 .
x(t):[0,tr] — R a(t) = 6(t)
Xy = ¢(¢) (0):10. 4]
x3 = M(t) a(t):[0,t¢] — R
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. University of
Optimal control problem 3

Parameters: Boundary conditions:
to =0 t € [0,t/] € R A(0) = Adept
Lrinal = Ur ¢(0) = ¢dept
M(O) — Mdept
State variables: Control variables:
x1 =) x(0):[0,¢;] — R3 2183 = f/
x, = () 2N
x3 = M(¢) a(t):[0,tr] — R?
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OCP 2 and 3:

Dynamical systems:

. Vcosa + u(xq, xy) . @, cos a; + u(xq,x,)
X, = Xy =
1 R cos x, 1 R cos x,

. Vsina + v(xq, x5) _ a, sina; + v(xq,x,)

Xy = Xy =

.2 R .2 R

x3 = —9g (X1, X2, Xx3) X3 = —9g(x1,%2,%X3, Q)

Cost functionals:
trinal Lfinal
Jea = [ g Jra) = | gea)de

to tO
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Results: Air speed changes

University of
@ Reading

Flying East:
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(a) 28th January, 2020 Eastbound
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longitude

(b) 25th January, 2020 Eastbound

Key to Airspeeds (V m/s) :

V< 201.5

201.5<V <204
1204 < V <206.5
B206.5< V <209
B209< V<2115

211.5< V <214
214<V <216.5
1216.5<V <219
B219< V <221.5
B221.5<V <224

224 < V <226.5
F226.5<V <229
B229< V <231.5
B231.5< V<234
B234< V <236.5

More tailwind along
GCR, more variability
in airspeed.
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Overview of Findings:
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(a) Savings made on each day West

Daily variation in savings across winter season 2019-2020
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Overview of Findings:

Prevents - :
an extra e ¢
723 000 kg of N w3 *
_ CO, emissions S =

Fuel savings in kg made by controlling airspeed in addition to heading angle
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Free time, fuel minimal trajectories using @ University of

dynamic programming: Reading

Would minimising fuel, but 10 Drulse phase fuel bur fiying Esstbound
allowing time to be free, in a 5 N o
fixed altitude flight produce
trajectories that are more fuel
efficient than those currently
flown and to what extent would =
the flight duration be changed?  :s

Fuel in kg

]
N B

! | |
Actual data Fuel minimal Time minimal
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University of

Optimal control problem 4 : o

Reading
Parameters: Boundary conditions:
to =0 te[0,tr] c R A(0) = Adept
trinar =ty 2 0 #(9) = Paept
M(O) — Mdept
State variables: Control variables:
_ t)=20
x1 = A(t) x(t): [0, te] — R? Zlgt% _ v
x, = () AN -
x3 = M(t) a(t):[0,tr] — R?
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University of

Optimal control problem 5: o

Reading
Parameters: Boundary conditions:
to =0 te[0,tr] c R A(0) = Adept
tfinal — tf >0 ¢(0) = ¢dept
State variables: Control variables:
_ t) =20
x1 = A(t) x(t): [0, te] — R? Zlgt% _ v
x; = ¢(t) Xl

a(t):[0,tr] — R?
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Optimal control problem 4: @‘@;ﬁiﬁ‘ngf

Dynamical system:

. a, cos a; + u(xq,x,)
x1 —

R cos x,
. a, sinaq + v(xq,x,)
Xy =
. R
X3 =—9
Cost functional:
Lfinal Lfinal
J(x,a) = f L(x, a)dt = f g(x, ay) dt J(): 0, t¢] X REXR— R

to to
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Optimal control problem 5: @‘@;ﬁiﬁ‘ngf

Dynamical system:

. a, cos a; + u(xq,x,)
x1 —

R cos x,
. a, sinaq + v(xq,x,)
Xy = R
Cost functional:
tfinal tfinal
J(x, a) = f L(x, a)dt = f 1dt J@®):[0,t;)] x R* X R+— R
to £
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. . University of
Dynamic programming: ..

» Solve the Hamilton Jacobi Bellman Equation:

Time minimal: v(z) + sup{—Duv - f(z,a) —1} =0 z € RN \C
ac A o(z) = 1 T(x) = +oo
v(z) =0 Ve el 1-e T T(z) < +oo

- V(z) - inf {g(z,a) + f(z,0) - AV () — (9(z,) = )V(2)} =0 z € R*\ C
Fuel minimal: a€A

V(I):U IEG

» Use value function map to find optimal feedback control
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University of
Semi-Lagrangian Scheme: (time) .

Updated value for space I represents linear interpolation of
node i and iteration m. value function outside of grid points. These terms

derived
. / e

[V];n_l'_l — H,lgiﬂ{g_&tf[v];”(yi + ‘&tf(yi: ﬂ))} +1 - E—ﬂ.t Kruzkow

transform
which can be
Value is calculated for Here the expressed as:
all combinations of dynamical system
control variable and is approximated by At 1 T(z) = 400
minimum accepted as an Euler scheme Voie) = _AING)
the node value. with time step At . L e clse
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University of
Semi-Lagrangian Scheme: (fuel).

The extra term
is included to
account for

/ the fact that
\ the running

Updated value for space I represents linear interpolation of
node i and iteration m. value function outside of grid points.

(vt = IIIEE}{I[V]?‘(yi + At f(yi,a)) + Atg(y:, ) (1 — V™ (y:)) } costis no
/< T longer 1 asin
Value is calculated for all the time
alue is calculated for all The fuel burn function g is minimal
combinations of control variable : : :
. now included in the version.
and minimum accepted as the .
formulation.

node value.
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Algorithm to find value map:

Find V™*1 for

Estimate starting Find minimum

value at grid Cr:)nstruct each combination result and store
ooint: t e I of controls. If
‘ interpolant:
0 for target I[Vm? yi +Atf (yi,a) l
1 elsewhere IS el el Measure distance
specified grid, set |[Vm+L —pm|
the value for this
- pointto 1 l
I > tolerance < tolerance
Reset target Update
S gl values to O — ym = ym+i Stop.
™ e : Move to next grid point
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Actual flight data B Reading

» Positions and times recorded by flightradar24.com.
» Using wind field and ground speed, airspeed can be recovered.
> If outside practical bounds, adjusted and time altered accordingly.
» Altitude kept to approximately FL 340 (barometric pressure of 250 hPa).
» Fuel burn calculated as for simulated flights.
» Flights from:  American Airlines
British Airways
Delta Air Lines
Virgin Atlantic
» 1547 eastbound and 1567 westbound flights considered.
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Results: comparison across all data s

University of

Reading
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At 5% level: significantly less fuel used, but time of flight not significantly longer.
Significantly lower average airspeeds for flights.
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Results: comparison across all data s

University of

Reading

=

%10? Cruise phase fuel burn flying Westbound

Fuel in kg
o~ o o >
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Similar to Eastbound results.
Slightly reduced fuel savings and not such a disparity in airspeed.

«10*  Cruise phase flight time flying Westbound

Timeins
[N}
o

o
- ----

b !
no
T T T

},
%

N
T

L L
Actual data Fuel minimal Time minimal

260

255 1

N

[¢1)

(=}
T

Airspeed in m/s

235

2301

2251

Average cruise phase air speed flying Westbound

N

~

()]
T

NS

e

o
:

\
\
\
\
\

Actual data Fuel minimal Time minimal

cathie.wells@reading.ac.uk

Mathematics of Planet Earth

4th April, 2023




Results: differences between airlines

=

University of
@ Reading

Virgin Atlantic [

Delta Air Lines |

British Airways

American Airlines
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Average percentage savings per flight for each airline
Flying East at constant altitude

I Fuel
[ Time | |

% saving

Proportion of flights by each airline

American Airlines

Virgin Atlantic

Delta Air Lines

British Airways
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University of

Overview of free-time, fuel minimal results: @ Reading

» Total fuel reduction Eastbound: 2.5 million kg
» Total fuel reduction Westbound: 2.8 million kg
»Each 1kg of aviation fuel burned produces 3.16 kg of CO,
» Across this one winter period :

16.6 million kg reduction in CO, emissions

207 b 15962
average UK ave.rage

. Pakistan
residents

) residents

Photo source: theblackpooltower.co
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Conclusions: o

* Planning transatlantic flights exploiting available winds reduces emissions.
* Reduction of 6.7 million kg of CO, emissions on the route between JFK to LHR one winter v
* Fuel minimisation for a fixed time route may be more practical than minimising time.
* Altering airspeed can save an extra 723 000 kg of CO, emissions compared with just altering
heading for fixed-time, fuel minimal routes ..
* Fuel minimal free-time flights compared with actual flight data:
16.6 million kg CO, emissions saved.

* Thisis a 4.6% saving flying East and a 3.8% saving flying West.
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Conclusions: o

(19)

* Planning transatlantic fligt‘“t”)'a'nd ‘\'_he OrgamSe ions.
d\S " “to LHR one winter .
nimising time.

red with just altering

From March 2022, the Organised Track
Structure has been disbanded up to 33 000
feet.
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New Horizons: o

e Controlling cruise altitude.

* Including climb and descent phases.

* Avoiding areas of convection and/or super saturated icy regions.

* Training neural networks for faster rerouting as new information
becomes available.

Results so far published in Environmental Research Letters (20),
Optimization and Engineering (21)and Transportation Research
Part D (Transport and Environment) (22).
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